
Personalized WEB applications
with PHP/databases

SQLite auto-increment field

• In SQLite, every row of every table has an 64-bit signed integer
ROWID. The ROWID for each row is unique among all rows in the
same table.

• You can access the ROWID of an SQLite table using one the special
column names ROWID, _ROWID_, or OID. Except if you declare an
ordinary table column to use one of those special names, then the
use of that name will refer to the declared column not to the
internal ROWID.

• If a table contains a column of type INTEGER PRIMARY KEY, then
that column becomes an alias for the ROWID. You can then access
the ROWID using any of four different names, the original three
names described above or the name given to the INTEGER
PRIMARY KEY column. All these names are aliases for one another
and work equally well in any context.

http://www.sqlite.org/lang_createtable.html
http://www.sqlite.org/lang_createtable.html
http://www.sqlite.org/lang_createtable.html
http://www.sqlite.org/lang_createtable.html

Web services

web service: software functionality that can be
invoked through the internet using common
protocols

• like a remote function(s) you can call by contacting a

program on a web server

• many web services accept parameters and produce
results

• service's output can be text, HTML, XML, JSON or
other content types

RESTful web services

• Representational State Transfer :

 presented with a network of Web pages (a virtual
 state-machine), the user progresses through an
 application by selecting links (state transitions),
 resulting in the next page (representing the next
 state of the application) being transferred to the
 user and rendered for his use.

• REST is initially described in the context of HTTP.

• RESTful applications maximize the use of the existing,
well-defined HTTP interface, its built-in capabilities,
and minimize the addition of new application-specific
features on top of it.

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Central principles of REST

• The existence of resources (sources of specific information),
each of which is referenced with a global identifier (e.g., a
URI in HTTP).

• In order to manipulate these resources, components of the
network (user agents and origin servers) communicate via a
standardized interface (e.g., HTTP) and exchange
representations of these resources (the actual documents
conveying the information).

• In addition to URIs, Internet media types, request and
response codes HTTP has a rich vocabulary of operations:

 GET POST PUT DELETE etc.
 REST uses these operations and existing features of the
 well-defined HTTP protocol.

REST vs. SOAP

• SOAP (Simple Object Access Protocol) encourages
each application designer to define new, application-
specific operations that supplant HTTP operations:

getUsers()

getNewUsersSince(date SinceDate)

savePurchaseOrder(string CustomerID, string
PurchaseOrderID) etc.

• This additive, "re-invention of the wheel" vocabulary — defined on the spot and
subject to individual judgment or preference — disregards many of HTTP's existing
capabilities, such as authentication, caching, and content-type negotiation.

• The advantage of SOAP over REST comes from this same limitation: Since it does
not take advantage of HTTP conventions, SOAP works equally well over raw TCP,
named pipes, message queues etc.

http://en.wikipedia.org/wiki/SOAP

Web services with PHP

• As we already know, RESTful web services can be
written in PHP and contacted by the browser through
Ajax or JSONP

• The content provided by the service can be of many
different types:

Content ("MIME") types

http://en.wikipedia.org/wiki/Mime_type

Example: Exponent web service

• Write a web service that accepts a base and exponent
and outputs base raised to the exponent power.

• For example, the following “query” should output 81 :
http://example.com/exponent.php?base=3&exponent=4

• Solution:
header("Content-type: text/plain");
$base = $_GET["base"];
$exp = $_GET["exponent"];
$result = pow($base, $exp);
print $result;

Displaying partial HTML page returned
from PHP Web service

• Java script code in the consumer application:

var ajax=new XMLHttpRequest();
ajax.onreadystatechange=function() {
 if (ajax.readyState==4 && ajax.status==200) {
 document.getElementById("txtHint").innerHTML
 =ajax.responseText;
 }
};
ajax.open("GET","getuser.php?q="+str,true);
ajax.send();

<div id="txtHint">Person info will be listed here.</div>

getuser.php
<?php

$q=$_GET["q"];

…

$sql="SELECT * FROM user WHERE id = '".$q."'";

$result = query ($sql);

echo "<table border='1'>

<tr>

<th>Firstname</th>

<th>Lastname</th>

<th>Age</th>

</tr>";

…

?>

getuser.php
<?php

…

while($row = mysql_fetch_array($result))

 {

 echo "<tr>";

 echo "<td>" . $row['FirstName'] . "</td>";

 echo "<td>" . $row['LastName'] . "</td>";

 echo "<td>" . $row['Age'] . "</td>";

echo "</tr>";

 }

echo "</table>";

?>

PHP graphics

• PHP has graphics capabilities that can dynamically generate
images you can then display using HTML code.

• With the help of a graphics library called GD (Graphics Draw),
we can dynamically generate images in popular formats such
as GIF, JPEG, and PNG, and either return them to a web
browser for display or write them to a file on the server.

• This capability of PHP is extremely important because there is
no notion of being able to “draw” on a web page purely
through HTML.

• PHP allows you to “draw” on a portion of a page by
performing graphics operations on an image, and then
displaying that image on the page using the familiar
tag.

PHP graphics

• PHP has graphics capabilities that can dynamically generate
images you can then display using HTML code.

• With the help of a graphics library called GD (Graphics Draw),
we can dynamically generate images in popular formats such
as GIF, JPEG, and PNG, and either return them to a web
browser for display or write them to a file on the server.

• This capability of PHP is extremely important because there is
no notion of being able to “draw” on a web page purely
through HTML.

• PHP allows you to “draw” on a portion of a page by
performing graphics operations on an image, and then
displaying that image on the page using the familiar
tag.

CAPTCHA code

define('CAPTCHA_NUMCHARS', 6);

// Generate the random pass-phrase

$pass_phrase = "";

for ($i = 0; $i < CAPTCHA_NUMCHARS; $i++) {

 $pass_phrase .= chr(rand(97, 122));

}

Generating distorted image
define('CAPTCHA_WIDTH', 100);

define('CAPTCHA_HEIGHT', 25);

$img = imagecreatetruecolor(CAPTCHA_WIDTH, CAPTCHA_HEIGHT);

// Set a white background with black text and gray graphics

$bg_color = imagecolorallocate($img, 255, 255, 255); // white

$text_color = imagecolorallocate($img, 0, 0, 0); // black

$graphic_color = imagecolorallocate($img, 64, 64, 64); // dark gray

// Fill the background

imagefilledrectangle($img, 0, 0, CAPTCHA_WIDTH, CAPTCHA_HEIGHT, $bg_color);

// Draw some random lines

for ($i = 0; $i < 5; $i++) {

 imageline($img, 0, rand() % CAPTCHA_HEIGHT, CAPTCHA_WIDTH,

 rand() % CAPTCHA_HEIGHT, $graphic_color);

}

// Sprinkle in some random dots

for ($i = 0; $i < 50; $i++) {

 imagesetpixel($img, rand() % CAPTCHA_WIDTH,rand() % CAPTCHA_HEIGHT,
$graphic_color);

}

// Draw the pass-phrase string

imagettftext($img, 18, 0, 5, CAPTCHA_HEIGHT - 5, $text_color, 'Courier New Bold.ttf',
$pass_phrase);

// Output the image as a PNG using a header

header("Content-type: image/png");

imagepng($img);

Generating distorted image
…

// Sprinkle in some random dots

for ($i = 0; $i < 50; $i++) {

 imagesetpixel($img, rand() % CAPTCHA_WIDTH,

 rand() % CAPTCHA_HEIGHT, $graphic_color);

}

// Draw the pass-phrase string

imagettftext($img, 18, 0, 5, CAPTCHA_HEIGHT - 5,

 $text_color, 'Courier New Bold.ttf', $pass_phrase);

// Output the image as a PNG using a header

header("Content-type: image/png");

imagepng($img);

imagepng()

• When you’re all finished drawing to an image, you can output
it directly to the client web browser or to a file on the server.

• Either way, the end result is an image that can be used with
the HTML tag for display on a web page.

• If you elect to generate a PNG image directly to memory (i.e.,
no filename), then you must also call the header() function to
have it delivered to the browser via a header.

Generating random image on the
server with PHP: example

• Code is in 02.04.games captcha.php

• Graphic packages are now installed in the lab:

link

http://owl.csci.viu.ca/~barskym/games/captcha.php

Defining constants (in file appvars.php)

<?php

// Define application constants

define('MM_UPLOADPATH', 'images/');

define('MM_MAXFILESIZE', 32768); // 32 KB

define('MM_MAXIMGWIDTH', 120); // 120 pixels

define('MM_MAXIMGHEIGHT', 120); // 120 pixels

?>

To reuse PHP script

require_once('header.php');
require_once('appvars.php');

Submitting page to itself

• $_SERVER['PHP_SELF'] simply returns a pathname of
the current page on the server being executed.

• So if you had a PHP script and needed to send a form
to the same page you could use:

<form action="<?php echo($_SERVER['PHP_SELF']); ?>"
method="post">

Example: signup page

<p>Please enter your username and desired password to sign up.</p>
<form method="post" action ="<?php Echo($_SERVER['PHP_SELF']); ?>" >
 <fieldset>
 <label for="username">Username:</label>
 <input type="text" name="username"
 value="<?php if (!empty($username)) echo $username; ?>" />

 <label for="password1">Password:</label>
 <input type="password" name="password1" />

 <label for="password2">Password (retype):</label>
 <input type="password" name="password2" />

 </fieldset>
 <input type="submit" value="Sign Up" name="submit" />
</form>

PHP code to produce different pages,
depending on the status

if (isset($_POST['submit'])) {

 // Grab the profile data from the POST

 $username = trim($_POST['username']);

 $password1 =trim($_POST['password1']);

 $password2 = trim($_POST['password2']);

 // Make sure someone isn't already registered using this username

 …

 if (user does not exist) {

 add user to a database

 }

 else {

 echo '<p class="error">The user with this name already exists. ‘.

 'Please choose a different name.</p>‘';

 }

}

Uploading files (images)
 and storing them on server

<input type="file" id="new_picture" name="new_picture" />

<?php if (!empty($old_picture)) {

 echo '<img class="profile" src="' . MM_UPLOADPATH .
 $old_picture . '" alt="Profile Picture" />';

 }

?>

• Full code in mismatch_source/editprofile.php

PHP image upload code
$target = MM_UPLOADPATH . basename($new_picture);

if (move_uploaded_file($_FILES['new_picture']['tmp_name'], $target)) {

 chmod($target, 0755); //unix server

// The new picture file move was successful, now make sure any old picture is deleted

 if (!empty($old_picture) && ($old_picture != $new_picture)) {

 @unlink(MM_UPLOADPATH . $old_picture);

 }

}

else {

// The new picture file move failed, so delete the temporary file and set the error flag

 @unlink($_FILES['new_picture']['tmp_name']);

 $error = true;

 echo '<p class="error">Sorry, there was a problem uploading your picture.</p>';

}

HTTP authentication

• The idea behind HTTP authentication is that the server
withholds a protected web page, and then asks the
browser to prompt the user for a user name and
password.

• If the user enters these correctly, the browser goes
ahead and sends along the page.

• This dialog between browser and server takes place
through headers, which are little text messages with
specific instructions on what is being requested or
delivered.

• Headers are actually used every time you visit a web
page, not just when authentication is required.

Delivering a normal,
unprotected web page

• The browser requests a page from the server by
sending a couple of headers to identify the file being
requested and the host name of the server.

• The server responds with a collection of headers,
followed by the requested page.

• The browser receives the headers and the page, and
renders the HTML code for the page.

Headers example

• POST
/mail/ca/u/0/?ui=2&ik=107df84a1e&
rid=mail%3Ai.680f.0.1&view=cv&th=
13c04134dc1284ab&th=13c0255dc9
5e706

• host:mail.google.com
• scheme:https
• version:HTTP/1.1
• accept:*/*
• …
• ui:2
• ik:107df84a1e
• rid:mail:i.680f.0.1
• view:cv
• prf:1
• nsc:1
• mb:0
• search:inbox

• Response Header
• cache-control:no-cache, no-store,

max-age=0, must-revalidate
• content-encoding:gzip
• content-length:10445
• content-type:text/javascript;

charset=UTF-8
• date:Fri, 04 Jan 2013 13:20:42

GMT
• expires:Fri, 01 Jan 1990 00:00:00

GMT
• pragma:no-cache
• server:GSE
• status:200 OK
• version:HTTP/1.1
• x-content-type-options:nosniff
• x-frame-options:SAMEORIGIN
• x-xss-protection:1; mode=block

Authentication code example
<?php
// User name and password for authentication

 $username = 'rock';
 $password = 'roll';
 if (!isset($_SERVER['PHP_AUTH_USER']) ||
 !isset($_SERVER['PHP_AUTH_PW']) ||
 ($_SERVER['PHP_AUTH_USER'] != $username) ||
 ($_SERVER['PHP_AUTH_PW'] != $password)) {
// The user name/password are incorrect so send the authentication headers

 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Basic realm="Guitar Wars"');
 exit('Sorry, you must enter a valid user name and password to
access this page.');
 }
?>

USER IDENTIFICATION

• it simply allows a browser to
request a single document
from a web server

• How Amazon knows who I
am, each time I am
requesting a different page

• How does a client uniquely
identify itself to a server,
and how does the server
provide specific content to
each client?

HTTP is a stateless protocol

Stateful client/server interaction

• today we'll learn about pieces of data called
cookies used to work around this problem,
which are used as the basis of higher-level
sessions between clients and servers

What is a cookie?

• cookie: a small amount of information sent by a
server to a browser, and then sent back by the
browser on future page requests

• cookies have many uses:
– authentication

– user tracking

– maintaining user preferences, shopping carts, etc.

• a cookie's data consists of a single name/value
pair, sent in the header of the client's HTTP GET
or POST request

http://en.wikipedia.org/wiki/HTTP_cookie

How cookies are sent

• when the browser requests a page, the server may send
back a cookie(s) with it

• if your server has previously sent any cookies to the
browser, the browser will send them back on subsequent
requests

Myths about cookies

• Myths:
– Cookies are like worms/viruses and can erase data from the

user's hard disk.
– Cookies are a form of spyware and can steal your personal

information.
– Cookies generate popups and spam.
– Cookies are only used for advertising.

• Facts:
– Cookies are only data, not program code.
– Cookies cannot erase or read information from the user's

computer.
– Cookies are usually anonymous (do not contain personal

information).
– Cookies CAN be used to track your viewing habits on a particular

site.

A "tracking cookie"

• an advertising company can put a cookie on your
machine when you visit one site, and see it when you
visit another site that also uses that advertising
company

• therefore they can tell that the same person (you)
visited both sites

• can be thwarted by telling your browser not to accept
"third-party cookies"

Where are the cookies on my
computer?

• each is stored as a .txt file similar
to the site's domain name

• IE: HomeDirectory\Cookies e.g.

C:\Documents and
Settings\jsmith\Cookies

• Chrome:
C:\Users\username\AppData\Loc
al\Google\Chrome\User
Data\Default

• Firefox:
HomeDirectory\.mozilla\firefox\??
?.default\cookies.txt view cookies
in Firefox preferences: Privacy,
Show Cookies...

How long does a cookie exist?

• session cookie : the default type; a temporary cookie
that is stored only in the browser's memory
– when the browser is closed, temporary cookies will be

erased
– can not be used for tracking long-term information
– safer, because no programs other than the browser can

access them

• persistent cookie : one that is stored in a file on the
browser's computer
– can track long-term information
– potentially less secure, because users (or programs they

run) can open cookie files, see/change the cookie values,
etc.

Reminder: cookies in JavaScript

• JS has a global document.cookie field (a string)

• you can manually set/get cookie data from
this field (sep. by ;), and it will be changed

Reminder: Cookies in JavaScript

// setting two cookies

document.cookie = "username=smith";

document.cookie = "password=12345";

document.cookie = "age=29; expires=Thu, 01-
Jan-1970 00:00:01 GMT";

// deleting a cookie ...

Reminder: Cookies in JavaScript

// (later)

var allCookies = document.cookie.split(";");

// ["username=smith", "password=12345"]

for (var i = 0; i < allCookies.length; i++)

{

 var eachCookie = allCookies[i].split("=");

 // ["username", "smith"]

 var cookieName = eachCookie[0]; // "username"

 var cookieValue = eachCookie[1]; // "smith" ... }

Setting a cookie in PHP

setcookie("name", "value");
setcookie("username", "marina");
setcookie("favoritecolor", "blue");

• setcookie causes your script to send a cookie
to the user's browser

• setcookie must be called before any output
statements (HTML blocks, print, or echo)

• you can set multiple cookies (20-50) per user,
each up to 3-4K bytes

Retrieving information from a cookie
in PHP

retrieve value of the cookie
$variable = $_COOKIE["name"];
if (isset($_COOKIE["username"])) {
 $username = $_COOKIE["username"];
 print("Welcome back, $username.\n");
} else {
print("Never heard of you.\n"); }
• any cookies sent by client are stored in $_COOKIES

associative array
• use isset function to see whether a given cookie name

exists

http://us2.php.net/isset

Setting a persistent cookie in PHP

setcookie("name", "value", timeout);

$expireTime = time() + 60*60*24*7; # 1 week from now

setcookie("CouponNumber", "389752", $expireTime);

setcookie("CouponValue", "100.00", $expireTime);

• to set a persistent cookie, pass a third parameter for its
timeout in seconds

• time function returns the current time in seconds
– date function can convert a time in seconds to a readable

date

http://www.webstepbook.com/supplements-2ed/slides/>http:/us2.php.net/time
http://us2.php.net/manual/en/function.date.php

Removing a persistent cookie

• setcookie("name", "", time() - 1);

• setcookie("CouponNumber", "", time() - 1);

• if the server wants to remove a persistent cookie, it
should set it again, passing a timeout that is prior to
the present time

Sessions

• session: an abstract concept to represent a series of HTTP
requests and responses between a specific Web browser
and server

• HTTP doesn't support the notion of a session, but PHP does

• sessions vs. cookies: a cookie is data stored on the client
• a session's data is stored on the server (only 1 session per

client)
• sessions are often built on top of cookies: the only data the

client stores is a cookie holding a unique session ID
• on each page request, the client sends its session ID cookie,

and the server uses this to find and retrieve the client's
session data

How sessions are established

• client's browser makes an initial request to the server
• server notes client's IP address/browser, stores some local session data,

and sends a session ID back to client
• client sends that same session ID back to server on future requests
• server uses session ID to retrieve the data for the client's session later,

like a ticket given at a coat-check room

Sessions in PHP: session_start

session_start();
• session_start signifies your script wants a session with

the user
– must be called at the top of your script, before any HTML

output is produced

• when you call session_start:
– if the server hasn't seen this user before, a new session is

created
– otherwise, existing session data is loaded into $_SESSION

associative array
– you can store data in $_SESSION and retrieve it on future

pages

• complete list of PHP session functions

http://us.php.net/manual/en/ref.session.php

Accessing session data

$_SESSION["name"] = value; # store session data
$variable = $_SESSION["name"]; # read session data
if (isset($_SESSION["name"])) { # check for session data
 if (isset($_SESSION["points"])) {
 $points = $_SESSION["points"];
 print("You've earned $points points.\n");
 } else {
 $_SESSION["points"] = 0; # default
 }
}

• the $_SESSION associative array reads/stores all session data
• use isset function to see whether a given value is in the session

Where is session data stored?

• on the client, the session ID is stored as a cookie with
the name PHPSESSID

• on the server, session data are stored as temporary
files such as /tmp/sess_fcc17f071...

• you can find out (or change) the folder where session
data is saved using the session_save_path function

• for very large applications, session data can be stored
into a SQL database (or other destination) instead
using the session_set_save_handler function

http://us.php.net/manual/en/function.session-save-path.php
http://www.php.net/manual/en/function.session-set-save-handler.php

Session timeout

• because HTTP is stateless, it is hard for the server to
know when a user has finished a session

• ideally, user explicitly logs out, but many users don't
• client deletes session cookies when browser closes
• server automatically cleans up old sessions after a

period of time
– old session data consumes resources and may present a

security risk
– adjustable in PHP server settings or with

session_cache_expire function
– you can explicitly delete a session by calling

session_destroy

http://us2.php.net/manual/en/function.session-cache-expire.php
http://us.php.net/manual/en/function.session-destroy.php

Browsers that don't support cookies

• session_start(); # same as usual
• # Generate a URL to link to one of our site's pages

$orderUrl = "/order.php?PHPSESSID=" . session_id();
• if a client's browser doesn't support cookies, it can still

send a session ID as a query string parameter named
PHPSESSID
– this is done automatically; session_start detects whether

the browser supports cookies and chooses the right
method

• if necessary (such as to build a URL for a link on the
page), the server can find out the client's session ID by
calling the session_id function

http://us.php.net/manual/en/function.session-id.php

Ending a session

session_destroy();
• session_destroy ends your current session
• potential problem: if you call session_start again

later, it sometimes reuses the same session
ID/data you used before

• if you may want to start a completely new empty
session later, it is best to flush out the old one:

session_destroy();
session_regenerate_id(TRUE);
flushes out session ID number session_start();

Implementing user logins

• many sites have the ability to create accounts
and log in users

• most apps have a database of user accounts

• when you try to log in, your name/pw are
compared to those in the database

"Remember Me" feature

• How might an app
implement a "Remember
Me" feature, where the
user's login info is
remembered and reused
when the user comes
back later?

• Is this stored as session
data? Why or why not?

• What concerns come up
when trying to remember
data about the user who
has logged in?

PHP WEB APP EXAMPLE
link

http://owl.csci.viu.ca/~barskym/php/mismatch/

Designing PHP-DB application:
ER diagram of Perfect Mismatch

Users

Mismatch Topics

First name

Last name

Topic ID

Category ID

Mismatch Categories

ID

Password

Gender

Birthdate

City
State

Picture

Topic

Category

User
responses

Yes/No

Converting into tables

• Each entity is converted into a table

Users (ID, Password, FirstName, LastName, Gender, Birthdate,
 City, State, Picture)

Categories (ID, Category)

Topics (ID, Topic)

• Each relationship is converted into a table:

Resposes (UserID, TopicID, response)

TopicCategories (TopicID, CategoryID)

Pages flow

• Home page (index.php):
– General info

– Login

– Signup

• Signup
– New user name

– New password

– Password confirmation

• Log-in
– Username

– Password

• View profile

• Edit profile

• Questionnaire

• My mismatch

Full source code: link

http://owl.csci.viu.ca/~barskym/php/mismatch.zip

